

VEER CAL	nghong pangangan arata hasilutas ana kawa hasi	4
Cauc	chy problem	-
by sc	blving this equation, u_x and u_y can be determined along the Γ_0 curves	ve
Higl	her order differentiation $\begin{cases} \frac{d}{ds} \left(\frac{\partial u}{\partial x}\right) = \frac{\partial^2 u}{\partial x^2} \frac{dx}{ds} + \frac{\partial^2 u}{\partial x \partial y} \frac{dy}{ds} \\ \frac{d}{ds} \left(\frac{\partial u}{\partial y}\right) = \frac{\partial^2 u}{\partial x \partial y} \frac{dx}{ds} + \frac{\partial^2 u}{\partial y^2} \frac{dy}{ds} \end{cases}$	
The	based equation $A \frac{\partial^{\tau} u}{\partial x^{\tau}} + B \frac{\partial^{\tau} u}{\partial x \partial y} + C \frac{\partial^{\tau} u}{\partial y^{\tau}} = F(x, y, u, u_x, u_y)$	
¢	$\begin{vmatrix} \frac{dx}{ds} & \frac{dy}{ds} & \circ \\ \circ & \frac{dx}{ds} & \frac{dy}{ds} \end{vmatrix} = C\left(\frac{dx}{ds}\right)^{*} - B\frac{dx}{ds}\frac{dy}{ds} + A\left(\frac{dy}{ds}\right)^{*} \qquad \qquad$	
1		12

Second order PDEs types	
Three main PDE equations in fluid mechanics and heat transfer	
$\phi_{xx} + \phi_{yy} = \circ \longrightarrow$ Potential flow	
$u_{tt} = c^{Y} u_{xx} \longrightarrow$ Wave equation	
$u_t = u_{xx}$	
 All of these equations are linear and second order, but they show different physical behavior The number and types of IC and BC are different for each type 	
1	14

Canonical Forms of 1			
coordinate transformation f	or un	coupling PDEs	
$(x,y)\twoheadrightarrow(\xi,\eta)$			
$\begin{cases} \xi = cte \\ \eta = cte \end{cases} \text{characterist}$	tic equ	uation in transformed coordinate	
In the main PDE.			
$\Gamma^{\Delta>0}$	→	Two characteristic equations	
$B^2 - 4AC - \Delta = 0$	⇒	One characteristic equation	
	→	No characteristic equation	

View particular and a second s	6	<u>)</u>	
$\nabla^{T} u = u_{xx} + u_{yy} = 0$	$ \begin{cases} A = 1 \\ B = \circ \\ C = 1 \end{cases} $	$B^{T} - TAC = -T < \circ$	$\frac{dy}{dx} = \pm i$
$u_{xx} = u_t$	$\begin{bmatrix} A = 1 \\ B = C = 0 \end{bmatrix}$	$B^{r} - f A C = \circ$	$\frac{dt}{dx} = \circ$
$u_{xx} - u_{tt} = \circ$	$\begin{cases} A = 1 \\ B = 0 \\ C = -1 \end{cases}$	$B^{r} - fAC = f > \circ$	$\frac{dt}{dx} = \pm 1$

